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Abstract
Representation bases of unitary parasupersymmetry algebra of arbitrary order
p is constructed by some one-dimensional models which are shape invariant
with respect to the main quantum number n. Consequently, the isospectral
Hamiltonians and their exact solutions are obtained as labelled by the main
quantum number n.

PACS numbers: 03.65.Fd, 03.65.Ge, 02.20.Sv

Supersymmetry, symmetry between the fermionic and bosonic degrees of freedom, is playing
an important role in many recent developments in non-relativistic quantum mechanics [1–6].
Parafermi and parabose statistics are natural extensions of the usual Fermi and Bose statistics
[7–9]. Fermi and Bose statistics describe the one- and two-dimensional representations of the
permutation group, while the parafermi and parabose statistics describe higher dimensional
representations of the same group. In fact, parasupersymmetry algebra has provided a nice
symmetry between parafermions and parabosons. For the first time, Rubakov and Spiridonov
introduced parasupersymmetry algebra which describes an essential symmetry between bosons
and parafermions of order 2 [10]. However, later on, Khare introduced the non-unitary
parasupersymmetry algebra of arbitrary order p with the parafermionic generators Q1 and Q2

and bosonic generator H as [11]

Q
p

1 Q2 + Q
p−1
1 Q2Q1 + · · · + Q1Q2Q

p−1
1 + Q2Q

p

1 = 2pQ
p−1
1 H (1a)

Q
p
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2 Q1Q2 + · · · + Q2Q1Q
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2 = 2pQ
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Q
p+1
1 = Q

p+1
2 = 0 (1c)

[H,Q1] = [H,Q2] = 0. (1d )

In the non-unitary parasupersymmetry algebra (1), the parafermionic operators Q1 and Q2

are not Hermitian conjugations of each other, hence relations (1) are not closed under the
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Hermitian conjugation. If we choose Q1 = Q,Q2 = Q† and H = H †, then we get the
Khare–Rubakov–Spiridonov unitary parasupersymmetry algebra of arbitrary order p with the
parasupercharges Q and Q† and bosonic Hamiltonian H as follows [11, 12]:

QpQ† + Qp−1Q†Q + · · · + QQ†Qp−1 + Q†Qp = 2pQp−1H (2a)
Qp+1 = 0 (2b)
[H,Q] = 0 (2c)

together with their Hermitian conjugations. Therefore, the relations of unitary
parasupersymmetry algebra given in (2) are closed under Hermitian conjugation. At the
same time, the Khare–Rubakov–Spiridonov unitary parasupersymmetry algebra has been
successfully realized by many quantum solvable models [10–15]. On the other hand,
the factorization method [16] has been used extensively for obtaining algebraically the
exact solutions of the one-dimensional quantum models named shape-invariant potentials
[12, 17–26]. Recently, most of the one-dimensional shape-invariant solvable quantum
mechanical models have been classified into two bunches. The first bunch [27] includes models
for which the shape invariance parameter is the main quantum number n. Furthermore, in the
second bunch [28] the shape invariance parameter of the models is the secondary quantum
number m. Meanwhile, it has been shown in [28] that the Khare–Rubakov–Spiridonov unitary
parasupersymmetry algebra of arbitrary order p is realized by the shape-invariant quantum
mechanical models so that the algebra can be represented by the quantum mechanical states
of the models. For realizing the algebra, it has also been shown that the bosonic Hamiltonian
involves p + 1 isospectrum Hamiltonians. This fact has also been studied in detail for the
second bunch of the shape-invariant models in [28].

The master function A(x) was introduced as a polynomial of at most degree 2, where the
non-negativeweight function W(x) depended on the master function in the interval (a, b). The
weight function W(x) is determined in such a way that the expression (A(x)W(x))′/W(x)

becomes a polynomial of at most degree 1. Also, the interval (a, b) is chosen so that the
expression A(x)W(x) and its derivatives vanish at both ends. In the first class, obtained from
the factorization of the Schrödinger equation with respect to the main quantum number n,
the superpotential was explained in terms of the master function, the corresponding weight
function and also the main quantum number n [27, 29] (The main quantum number n is
an arbitrary non-negative integer, and also the secondary quantum number m is an arbitrary
non-negative integer with a maximum value equal to n.) The second class was derived by
factorizing the Schrödinger equation with respect to the secondary quantum number m, in
which the superpotential was explained in terms of the master function, its weight function
and also the secondary quantum number m [28]. Therefore, the superpotentials were labelled
in terms of n and m for the first class, and in terms of m for the second class. In [28], we
obtained representations for arbitrary-order unitary parasupersymmetry algebra where they
were constructed by the solutions corresponding to the quantum models obtained from shape
invariance on the secondary quantum number m. Consequently, we introduced isospectral
Hamiltonians labelled by the secondary quantum number m.

In [27], by using shape invariance on the main quantum number n, we obtained solutions
of the first class of exactly solvable models in terms of a multiplier of the orthogonal special
functions. In this letter, for some models of the first class with corresponding non-negative
weight function as

W(x) = Aλ(x) (3)

we realize the representation of an arbitrary-order unitary parasupersymmetry algebra, and
consequently, we represent the explicit form of isospectral Hamiltonians. We also calculate
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their spectra in terms of the parameters of master function A(x) (i.e. A′′, A′(0) and A(0))
and the parameter λ. Furthermore, following the master function theory, the parameter λ

and the interval (a, b) are determined so that the expression Aλ+1(x) and all its derivatives
vanish for the terminal points of the interval. Some special cases exist for the superpotentials
of Rosen–Morse II, Eckart, and for the superpotential corresponding to the master function
A(x) = x(1 − x) with weight function W(x) = xλ(1 − x)λ with λ > −1, which satisfy
condition (3). As an example, we consider the Rosen–Morse II superpotential with the
corresponding master function A(x) = 1 − x2 and weight function W(x) = (1 − x)α(1 + x)β.
If we put α = β = λ with λ > −1, with of course, −1 < x < +1, then the weight function
becomes W(x) = (1 − x2)λ.

For quantum solvable models introduced in [27] with corresponding weight function
satisfying condition (3), we get the factorized Schrödinger equations (h̄ = 2M = 1,m = 0)

as

A†(n)A(n)ψn(θ) = E(n)ψn(θ) A(n)A†(n)ψn−1(θ) = E(n)ψn−1(θ) (4)

with the following solutions:

ψn(θ) = an

[
A−λ/2(x)

(
d

dx

)n

An+λ(x)

]
x=x(θ)

(5)

where an is the normalization coefficient. In equation (5), the change of variable θ is obtained
from the equation

γ

cot γ θ
= A′(x)

2
(6)

where the constant γ is defined in terms of the master function as in

γ :=
√

−A′2(0) − 2A′′A(0)

4
. (7)

Note that γ may be real or pure imaginary. For example, γ is equal to 1 and i if we choose
the master function A(x) as x2 + 1 and x2 − 1, respectively. Therefore, from equation (6) it
is clear that x is expressed in terms of θ as a trigonometric function or a hyperbolic function
depending upon which one of the values 1 or i is used for the constant γ . The explicit forms
of the energy spectra of the partner Hamiltonians (4) and the raising and lowering operators
A†(n) and A(n) are calculated as [12]

E(n) = −n(n + 2λ)γ 2 (8)

A†(n) = d

dθ
+ Wn(θ) A(n) = − d

dθ
+ Wn(θ) (9)

where Wn(θ) is the superpotential:

Wn(θ) = (n + λ)
γ

cot γ θ
. (10)

Equations (4) describe the motion of a particle on the θ -axis in the presence of the partner
potentials

Vn,±(θ) = (n + λ)

[
(n + λ) sin2 γ θ ± 1

cos2 γ θ

]
γ 2. (11)

Equations of shape invariance (4) can be rewritten as the raising and lowering relations
on the wavefunction as

A†(n)ψn−1(θ) =
√

E(n)ψn(θ) A(n)ψn(θ) =
√

E(n)ψn−1(θ). (12)
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It is obvious that shape invariance symmetry described in equations (4) concludes

W 2
n (θ) +

dWn(θ)

dθ
− E(n) = W 2

n+1(θ) − dWn+1(θ)

dθ
− E(n + 1). (13)

We note that the second equation in (4) gives the first-order differential equation as

A(0)ψ0(θ) = 0 (14)

for n = 0. The exact solution of equation (14), i.e. the ground state ψ0(θ), is

ψ0(θ) = b
γ λ

cosλ γ θ
(15)

where b is the normalization coefficient of the ground state wavefunction. Therefore, by using
the first equation in (12), the algebraic solution of the Schrödinger equations (4) in terms of
the ground state ψ0(θ) becomes

ψn(θ) = A†(n)√
E(n)

A†(n − 1)√
E(n − 1)

· · · A†(1)√
E(1)

ψ0(θ). (16)

These points enable us to consider the quantum models for which we can analytically calculate
the representation of Khare–Rubakov–Spiridonov unitary parasupersymmetry algebra of
arbitrary order p, while the main quantum number n separates the isospectral Hamiltonians
from each other. This is in parallel with what has been done before using the secondary
quantum number m in [28]. Indeed, we are led to represent new bases for the arbitrary-order
unitary parasupersymmetry algebra by some of the one-dimensional quantum models such as
the Rosen–Morse II and Eckart superpotentials. We define the generators Q and Q† and H as
(p + 1) × (p + 1) matrices with the following matrix elements:

(Q)nn′ := A(n)δn+1,n′

(Q†)nn′ := A†(n′)δn,n′+1 (17)

(H)nn′ := Hnδn,n′ n, n′ = 1, 2, . . . , p + 1

in which we use the following ansatz for the Hamiltonians Hn:

Hn = 1
2A(n)A†(n) + 1

2Cn n = 1, 2, . . . , p
(18)

Hp+1 = 1
2A†(p)A(p) + 1

2Cp.

Then, equation (2b) and its Hermitian conjugate are automatically satisfied. With the help of
the ansatz (18), equation (2c) and its Hermitian conjugate conclude

E(n) − E(n + 1) = Cn+1 − Cn. (19)

Again, substituting the ansatz (18) in equation (2a) and using the shape invariance relation (4)
we get

Cp = 1

p

p∑
n=1

E(n) − E(p). (20)

Thus, from relations (19) and (20), the coefficients Cn can be determined as

Cn = 1

p

p∑
n′=1

E(n′) − E(n) n = 1, 2, . . . , p (21)

where their explicit forms are calculated as

Cn = −
[

2p2 − 6n2 + 3p + 1

6
+ (p − 2n + 1)λ

]
γ 2 n = 1, 2, . . . , p (22)
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in terms of the parameter γ . It is easy to show that the Hamiltonians H1,H2, . . . , Hp+1, with
the coefficients Cn as in (22), have the following eigenvalue:

E = −1

2

[
2p2 + 3p + 1

6
+ (p + 1)λ

]
γ 2. (23)

We see that E is independent of n. This means that the Hamiltonians H1,H2, . . . , Hp+1 have
the same spectrum so that they are called isospectral Hamiltonians. Here, the subscripts of
the isospectral Hamiltonians H1,H2, . . . , Hp+1 are just the main quantum number n. This
is the main difference between the isospectral Hamiltonians and those introduced in [28].
Furthermore, there is a difference in the spatial functionality of the scalar potentials. Thus,
one can introduce p+1 isospectral Hamiltonians H1,H2, . . . , Hp+1 which describe the motion
of a particle in the presence of quantized scalar potentials, on the θ -coordinate in terms of the
main quantum number n:

Hn = 1

2

[
− d2

dθ2
+ Vn,−(θ) + Cn

]
n = 1, 2, . . . , p

(24)

Hp+1 = 1

2

[
− d2

dθ2
+ Vp,+(θ) + Cp

]
with the following eigenvalue equations:

Hnψn−1(θ) = Eψn−1(θ) n = 1, 2, . . . , p + 1. (25)

Now, by introducing the column matrix �(θ) as a new basis with (p + 1) rows as

(�(θ))n := ψn(θ) n = 0, 1, . . . , p (26)

the representation of unitary parasupersymmetry algebra of order p practically realizes as

H�(θ) = E�(θ) Q�(θ) =




√
E(1)ψ0(θ)√
E(2)ψ1(θ)

...√
E(p)ψp−1(θ)

0




Q†�(θ) =




0√
E(1)ψ1(θ)√
E(2)ψ2(θ)

...√
E(p)ψp(θ)




.

(27)

Here, the adjoint conjugate parafermionic generators Q and Q† have the following explicit
forms:

(Q)nn′ =
(

− d

dθ
+ (n + λ)

γ

cot γ θ

)
δn+1,n′ (Q†)nn′ =

(
d

dθ
+ (n + λ)

γ

cot γ θ

)
δn,n′+1.

(28)

Therefore, with a view to the work of [28] where the representation of the Khare–
Rubakov–Spiridonov unitary parasupersymmetry algebra of arbitrary order p was obtained
for all quantum solvable models of shape invariant with respect to the secondary quantum
number m, we can get the representation new bases of the Khare–Rubakov–Spiridonov unitary
parasupersymmetry algebra of arbitrary order p for some of the solvable superpotentials
obtained from shape invariance with respect to the main quantum number n which they
satisfy in condition (3). These representations are realized by introducing p + 1 isospectral
Hamiltonians (24). These models, which are quantized by the main quantum number n,
describe the motion of a particle on the θ -coordinate in the presence of their own related scalar
potentials. Also, the rows of parastate �(θ), which represent unitary parasupersymmetry
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algebra of arbitrary order p, are distinguished from each other by the main quantum number
n. This is the reverse of the result of [28], because the rows of parastate had been labelled
there in terms of the secondary quantum number m.
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